

Temporary cell cycle arrest by ALRN-6924 selectively protects human scalp hair follicles and their epithelial stem cells from taxane-induced toxicity

Jennifer Gherardini¹, D. Allen Annis², Jeremy Cheret¹, Manuel Aivado², and Ralf Paus^{1,3,4}

¹ Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; ² Aileron Therapeutics, Inc., Boston, MA, USA; ³Monasterium Laboratory, Münster, Germany; ⁴ CUTANEON, Hamburg, Germany.

Ralf Paus, MD, DSc, FRSB

Professor of Dermatology, Univ Miami Miller School of Medicine

& Emeritus Professor, University of Manchester, UK

Conflict of interest : Study supported by a **research grant from AILERON Therapeutics**, for which MA serves as CEO, DAA as CSO, and RP as consultant

Chemotherapy-induced alopecia mediated taxanes

- Chemotherapy-induced alopecia is one of the most devastating, and often life-changing, adverse effects of cancer therapy that can persist long-term, namely under taxane therapy
- <u>Permanent alopecia:</u> paclitaxel (PTX) ca. 10%, docetaxel <25%

Chon et al., JAAD 2012.

STRATEGY: Target healthy cells with normal p53, but not cancer cells, by treating only cancer patients with documented mutant p53 (=many types of cancer)

ALRN-6924, inhibitor of MDMX and MDM2, activates normal p53, thereby upregulating p21. This arrests the cell cycle in normal, but not p53-mutant cancer cells

Do Not Post

ALRN-6924: Structure & key design properties

Structure based on the N-terminal α-helical domain of p53, with a hydrocarbon staple and other chemical modifications to ensure:

Do Not Post

releasing p53 to induce cell cycle arrest

Questions addressed

Does ALRN-6924:

- prevent general HF toxicity induced by paclitaxel (Taxol)?
- promote the dystrophic anagen pathway of HF repair after chemotherapy?
- prevent/reduce HF epithelial stem cell damage (apoptosis, DNA damage, EMT) induced by paclitaxel - and thus lower the risk of permanent alopecia?

Anagen VI HFs Experimental Design serum-free anagen scalp HF organ culture from healthy donors

Experimental groups:

- Vehicle
- Paclitaxel (PTX) 100 nM
- ALRN-6924 1 μM
- Paclitaxel 100 nM + ALRN-6924 1 μ M

- Warthin–Starry: HF morphology and Melanin clumping (cytotoxicity)
- **Ki-67/Activated caspase 3:** Proliferation/apoptosis and hair cycle progression
- **p21**^{Waf1/Cip1}: p53 activation (Waf1/Cip1 is induce by p53)

- **Keratin 15/Ki-67:** Keratin 15⁺ stem cell proliferation
- Keratin 15/Cas 3: Keratin 15⁺ stem cell proliferation
- **Keratin 15/γH2AX:** DNA damage of stem cells
- **Keratin 15/vimentin:** EMT induction in stem cells

Bodo et al. AJP 2007, Langan et al. EXD 2015, Purba et al. EMBO Mol Med 2019

<u>ALRN-6924</u> significantly <u>enhances p21 expression</u> in the anagen hair matrix bulb and bulge of human scalp HFs *ex vivo*

Mean +/- SEM; n=13-15 HFs from **3 donors**; Student's *t* test; **p<0.01; ***p<0.001; ****p<0.0001. White dottedareas: p21 evaluation area

<u>ALRN-6924</u> does not protect from PTX-induced apoptosis in the hair matrix, but prevents PTX-induced mitotic catastrophe, - without inducing catagen!

Mean +/- SEM; n=12-14 HFs from **3 donors**; Mann–Whitney test, *p<0.05. Green arrows: cleaved-caspase-3 positive cells; red arrows: Mitotic catastrophe (Ki-67/Caspase-3 double positive cells)

<u>ALRN-6924</u> itself does not promote melanin clumping, but prevents PTX-induced melanin clumping

Melanin clumping is a very sensitive sign of HF cytotoxicity and dystrophy

Hendrix et al. JID 2005, Bodo et al. Am J Pathol 2007, Piccini et al., BJD 2021

Vehicle

○ : Melanin clump

ALRN + PTX

PTX

Mean +/- SEM; n=11-15 HFs from **3 donors**; Student's *t*-test, *p<0.05.

ALRN-6924 <u>significantly reduces proliferation of K15⁺ cells</u>, suggesting cell cycle arrest of HF epithelial stem cells.

Keratin 15 (K15) HF stem cells marker

Number of K15⁺Ki-67⁺ cells in the bulge

Mean +/- SEM; n=12-15 HFs from **3 donors**; Mann–Whitney test, **p<0.01; ***p<0.001. White dotted areas: Ki-67 evaluation area. Do Not Post

<u>ALRN-6924</u> itself does not promote apoptosis of K15⁺ cells, but prevents apoptosis induction by PTX

Number of apoptotic K15⁺ cells in the bulge

ALRN-6924 protects K15⁺ progenitor/stem cells from PTX-induced DNA damage

γH2AX is detected at DNA double strand breaks, indicating for DNA damaged

Number of K15⁺γH2AX⁺ cells in the bulge

Mean +/- SEM; n=13-15 HFs from **3 donors**; Student's *t* test *p<0.05, **p<0.01. White dotted areas: K15⁺γH2AX⁺ evaluation.

ALRN-6924 protects K15⁺ keratinocyte from PTX-induced EMT

Expression of vimentin (=mesenchymal marker) by epithelial cells is a sign of pathological epithelial-mesenchymal transition (EMT) Imanishi et al. JID 2018, Cheret et al. JEADV 2020, Piccini et al. BJD 2021.

Number of K15⁺Vimentin⁺ cells in the bulge

Mean +/- SEM; n=12-14 HFs from **3 donors**; Student's *t* test, *p<0.05; **p <0.01. White areas: K15⁺Vimentin⁺ evaluation. Do Not Post

Summary

Dystrophic anagen pathway (Less alopecia, retarded hair regrowth)

Conclusions & Perspectives

- ALRN-6924 promises to reduce or even prevent PTX-induced HF toxicity also in vivo
- ALRN-6924 does not induce premature catagen *ex vivo* and is thus unlikely to cause telogen effluvium
- ALRN-6924 inhibits PTX-induced mitotic catastrophe in the hair matrix, indicating that it may favor a mild form of dystrophic anagen. This justifies the expectation that temporary cell cycle arrest by ALRN-6924 will reduce acute alopecia after PTX.
- Most importantly, ALRN-6924 significantly reduces PTX-induced HF stem cells apoptosis, DNA damage and EMT *ex vivo* and thus promises to reduce the incidence and degree of permanent alopecia after taxane therapy.

These *ex vivo* data support our working hypothesis that ALRN-6924 can SELECTIVELY protect healthy HFs and their stem cells against permanent taxane-induced alopecia.

Acknowledgments

DR. PHILLIP FROST DEPARTMENT OF DERMATOLOGY AND CUTANEOUS SURGERY

Ralf Paus, MD, DSc, FRSB Jeremy Cheret, PhD Tongyu Cao Wikramanayake, PhD Samantha Verling

D. Allen Annis, PhD Manuel Aivado, MD, PhD

Robert Kirsner, MD, PhD

Study support: Aileron Therapeutics Endowed Frost Scholarship (RP)